Monitoring Java Programs with Java Pathbplorer

Klans Havelund
kestrel Technology
NASA Ames Research Center
VMoffert Field., C AL 94035 .-
havelund@ptolemy.arc.nasa.gov

Grigore Rosu
Research [nstitute for Advanced Computer Science
NASA Ames Research Center
Moffett Field, CA, 94035
grosu@ptolemy.arc.nasa.gov

Abstract

We present recent work on the development Java PathExplorer (JPAX), a tool for monitoring the ex-
ecution of Java programs. JPaX can be used during program testing to gain increased information about
program executions, and can potentially furthermore be applied during operation to survev safety critical
avorems. Tt ol facillnates ante ate " ustrvine: tation ol 4 mograr s D ore odes i will flenomit
events to an observer during its execution. [he observer checks the events against user provided high level
requirement specifications, for example temporal logic formulae, and against lower level error detection pro-
cedures, for example concurrency related such as deadlock and data race algorithms. High level requirement
specifications together with their underlying logics are defined in the Maude rewriting logic. and then can
either be directly checked us ng the Maude rewriting engine, or be first translated to efficient data structures

and then checked in Java.

1 Introduction

Correctness of software is becoming an increasingly important issue in many branches of our society. People’s
lives often depend on software systems even though they tend to not be aware of it. The success of most
technological experiments, incluling space craft and rover technology within the space agencies. heavily depends
on the correctness of software. It is widely accepted that future space crafts will become highly autonomous.
taking decisions without communication from ground, so the required software is becoming significantly more
complex, increasing the risk of mission failures. Two common ways to approach the delicate problem of software
correctness is program synthesis, which gives a high degree of confidence but seems to work properly only on
very restricted domain-specific problems, and program wverification. which is concerned with detecting as many
errors as possible in existing programs. Two important aspects of program verification are testing and the
use of formal methods. Traditional testing techniques, however, are very ad hoc and do not allow for formal
specification and verification of high level logical properties that a system needs to satisfv. On the other hand.
traditional formal methods such as model checking and theorem proving are usually very heavy and rarely can
be used in practice successfully without considerable manual effort.

The Automated Software Engineering group at NASA Ames Research Center has for sume time investigated
advanced formal methods for insuring software correctness. in hoth areas of program svathesis (Lt 3. 19] and
program verification (8. 9. 13, 7. U], Program svuthesis is not diseussed hege, bur it s worth noricingg ~hat
code and/or data stractires synchesized from logical formuliae. such s finite stare nachines, Buchi anromara or
dvnamic programming algorithms, are often used in progriun veritication. We have pecformed virions verificarion

case stidies using formal technigqnes, it partcntar model checking, to analyvze space cratt sottware ‘80 Two model



e e Tl aote boeendeseloped Bothe sppor e il stare space epioratien c L pre s sty
et state mdel Chec ko techmgnes 9 1< These techungres allow for oy temporal iogie properties
S ptostanis tar feee cfess nions stades, bt Pl to apply o farae proeranis

et aft e b e L i senes desertbang oar ctfort i cwnteoe versfreatron, whneh can

['his paper s the t
s by far the most nsed

Do roaehly detined as combng, resting and formid methods, Testing ~cales welland
cechutgque e practice to sadidat s softwire svstems. The merge of testing and temporad logie spectiviation is an
arterupt to achieve the bhenelita ot borh approaches. while avoiding some of the pirfalls of wl hoe testing and the
complexiry of “heorem proving - nd model checking. [0 this paper. we present the current statns of 4 new rintime
corificarion svstem, called Java PathExplorer 1JPAX). for monitoring Java progriuns hy analyzing (exploring)
particnlar execution traces. The centeral idea consists of extracting state events from an execnting progrant. and
rhen anadyzing them via @ cemote observer process. The observer performs rwo kinds of verificarion. namely
logre based monitoring and error pattern analysts.

Logie based monitoring consists of checking formal cequirement specifications on the executing program.
written in high tevel logics by nsers of the system. Logies are currently implemented in Mande {2]. o high-
performance svstem supporting both rewriting logic and membership equational logic. One can very naturally
and easily detine new logics in Maude. such as for example temporal logics, together with their operational
semantics. Currently. JPAX susports two builtin logics. future time and past time linear temporal logics. The
implementation of both these logics in Maude together with an infrastructure module that handles atomic
propositions that will most like y be part of any other more general logic. covers less than 130 lines. Therefore,
defining new logics should be very feasible for advanced users. The current version of Maude can do up to 3
million rewritings per second on 300Mhz processors, and its compiled version is intended to support 15 million
rewritings per second. Hence, we have decided to use Maude as the logical monitoring engine that performs the
conformance checks of events against specifications at this early stage of J PaX.

Error pattern analysis consists of analyzing one execution trace of events using various error detection
algorithms that can identify error-prone programming practices, such as unhealthy locking disciplines that may
Cod Lo data races we o dens HesC The import e enlappeling e Crhees izt o is that “he o Ha
error potentials even in the case where errors do not explicitely occur in the examined execution trace. They are
usually very fast and scalable, and often catch the problems they are designed to catch. that is, the randomness
in the choice of run does not seem to imply a similar randomness in the analysis results. Two such known
algorithms focusing on concurrency errors have been implemented in JPAX, one for deadlocks and the other for
data races, but the system is designed in such a way that users can relatively easilv attach new such algorithms.

The idea of using temporal logic in program testing is not new. and at our knowledge. has already been
pursued in the commercial Teraporal Rover tool (TR) [4]. and in the MaC tool [13]. TR allows the user to
specify future time temporal formulae as comments in programs. which are then translated into appropriate
Java code before the compilation. The MaC tool is closer in spirit to what we describe in this paper. except
that its specification language is fixed and very limited compared to the Maude language and doesn’t provide
support for error pattern analysis. On the other hand, tools like Visual Threads {6. 17] contain hardwired error
pattern analysis algorithms anc therefore are impossible to change or extend by a user.

Since the programming languages of the monitored program and the observer are not required to be the
same, eventually the svstem should allow to monitor programs composed of subprograms written in different
programming languages includiag also C++ and C. However, for simplicity the svstem described in this paper
will focus only on Java. A case study of 90.000 lines of C++ code for a rover controller has been carried out,
leading to the detection of a deidlock with a minimal amount of effort. One of the main design goals is to make
the system as general and generic as possible. allowing to handle multiple language systems and new vertfication
rules to be defined. even definir g new specification logics using Maude. Our hope is to make JPAX a basis for
experiments rather than a fixed system.

The paper is organized as follows. Section 2 gives an overview of JPAX. Section 3 describes the underlying
logic formalisms for writing requirement specifications. while Section 4 describes some of the error detection
algorithms for debugging conenrrent programs.  Finally. Section 3 coutains conclusions and a description of
fritiee work.



2 Overview of JPVX

JUAN can be regarded as conssting of three moan modaless an snstrnmentation tmodnle, an observer modile,
ek an antercannection module that ties them together throngh the observed event streamn. see Figure L The
instrumentation module performs asenpt-doven aronuted imstrmentation of the progran ro be observed. The
wstrumented progrun. when cun, will et celevant events to the interaction module. which further transmits
them to the observation module. The observer may tun on a ditferent compnter. i which case the events are
transmiteed over a socket. Henee. the input o JPAX consists of references ro two entiries: the Java program in
bvte code format to be monitored (created using a standard Java compiler) and the specification seripe defining
what kind of verification is requested. The onrput is i (possibly empty) set of warnings printed on a special
.

screen.

Specitficatons

Java Observer
Program —
cTTTT e~ Deadlock
Compile \% =
(=4
Bytecode @ s
= 3
2 5—"‘—;»{ LTL m Mauch
w

Instrument ‘?

[rstre aeuted . L

Byte:ode Execute
(JVM)

Il

Figure 1: Overview of JPAX

More specifically. the specification script defines what (if any) kind of error pattern detection algorithms
should be activated, and what if any) kind of logic based monitoring should be performed, and in that case
what the requirements are. For logic based monitoring, we have been inspired by the MaC language framework
[13] and have split the specification into an instrumentation script and a verification script. The verification
script identifies the high level requirement specifications that events are to be checked against. The propositions
referred to in these specificatior.s are abstract boolean flags. and do hence not refer directly to entities in the
concrete program. The instrumentation script establishes this connection between the concrete boolean program
predicates and the abstract propositions. The advantage of this layered approach, as also stated in [13], is that
the requirement spetification can be created without considering low level issues. and can even be created before
the construction of the program. Currently, the scripts are written in Java. Thus. high level Java language
constructs can be used to define the boolean predicates tv be observed.

The Java byte code instrumentation is performed using the powerful Jtrek Java byvte code engineering tool
[3] from Compaq. Jtrek makes it possible to easily read Java class files (byte code files), and traverse them as
abstract syntax trees while examining their contents, and insert new code. The inserted code can access the
contents of various runtime data structures, such as for example the call-time stack. and will, when eventually
executed, emit events carrying this extracted information to the observer.

The observer receives the events and dispatches these to a set of observer rules. each rule performing a
particular analysis that has been requested in the verification script. Generally, this modular enle based design
allows a user to easily define new runtime verification procedures without interfering with legacy code. Observer
rules are written in Java, but cana call programs written in other langnages. such as for example Maude. Maude
plays a special role in that high level requitement specifications can be written i the Mande rewriting logic.
The Maude rewriting engine caa then be nsed in two ditferent ways: s a monitonny engine during program
execntion. or as a transltion engine before execution. [n the former case, execution events are submitted to



the Moonde progeam. which e oien evalbiates them agiinst the oegaie anent pecitication. fn the Laer case,

the spectieation s teaslared icto cdata strncrire optimal for program ontrorineg, whichs then sent back o
T, andd ised wichin the Java progeam ro cheek the cvents during execution.

TPV is bult on a4 generic enviconment., named PathExplorer 12X whieh only consists of the mter-
connection module and the observer module. The goal is to make 10 posstble to moniror programs in other
programming languages. sieh s for example Cand C=+0 by st providing a lingiage specific instrumentation
modile. Such an experiment. has been performed in collaborarion wirh Rich Washimgron. member of the
Robotics group at NASA Ames. on 2 90.000 line C++ application for controlling a rover. The experument, just
activated the deadlock detection rule. and located a deadlock potential in the application that il not been

discovered through testing.

-

3 Logic Based Monitoring

Logic based monitoring consist: of checking execution events against a user-provided requirement specification
written in some logic, typically an assertion logic with states as models. or a temporal logic with traces as models.
JPAX allows the user to define such new logics in a Hexible manner using the Maude algebraic specification
language. Maude [2] is a modularized specification and verification system that verv efficiently implements
rewriting logic. A Maude module consists of operator declarations, and equations relating terms over the
operators and universally quantified variables. Modules can be composed. It is relatively widely accepted that
rewriting logic acts like a univarsal logic, in the sense that other logics, or more precisely their syntax and
operational semantics, can be imnplemented in rewriting logic. JPAX currently provides linear temporal logics.
both future time and past time, as builtin logics. Notice that multiple logics can be used in parallel. so each
property can be expressed in its most suitable language. Since the Maude implementations of the current logics
are quite compact, we include tnem below. The Maude notation will be introduced “on the y" as we give the

exenples.

3.1 Propositional Calculus

We begin with the following mo iule for propositional calculus, which is heavily used in JPAX, since most logics
are based on it. It implements an efficient procedure due to Hsiang (12] to decide validity of propositions:

fmod PROP-CALC is ex FORMULA . s=+ Derived operators s=e
ess Constructors ess» op _\/_ : Formula Formula -> Formula [assac]
op ./\. : Formula Formula -> Formula ({assoc comm] op '. : formula -> Foraula
op _++_ : Formula Formula -> Fo:-mula [assoc comm] . op _->_ : Formula Formula -> Formula
op _<->_ Formula Formula -> Formula
vars X Y Z : Formula . var Ase AtomStates .
aq X \/ Y = (X /N Y) ++ X ++ ¥
eq true /\ X = X . eq false /\ X = false . eq ' X = true ¢+ X .
eq false ++ X = X . eq X ++ X = false eq X -> Y = true ++ X ++ (X /\ Y)
eq X /N X =X . eq X <=> Y = true ++ X ++ ¥

oq X /N (Y ++ 2) = (X /N ¥) ++ X /N 2)

se«s Semantics
e eq (X /\ D {Ase} = X{Ase} /\ Y{Ase} .
eq (X ++ Y){Ase} = X{Ass} ++ Y{Ase}
endfm

The module FORMULA, which 's extended (imported). defines the infrastructure for all the user-defined logics.
This will be further described in subsequent sections. For now it suffices to say that it includes some designated
basic sorts (or types) such as Formula for syntactic formulae; Formulads for formula data structures needed
when more information than the formula itself should be kept for the next transition as in the case of past
time LTL: Atom for atoms. or state variables. which in the state denote a boolean value: AtomState for such
assignments of boolean values t> atoms. and AtomStates for such assignments together with Hnal assignments.
i.o.. those that are followed by the end of a trace. requiring a special evaluation as described in the sections on
fienre time and past time LTL {our semantics for the end of the execution trace is that of a continious process
rhiee doesn't change the state). The propositions that hold in a certamn program state are sonerated from the
executing instrumented program. Pechaps the most important operator provided by the modinle FORMULA is an
operition _{.}:FormulaDS AtomState -> FormulaDS which updites the formula data structure when an fabstract;
state change oceurs during the ececution of the program. Notice that this npdate operation acts like v morphism



for propostionn caleubi. so for propostcnad calendos it baseally cvalinaes proposttions i the new stare (the

Last rvo linesy Dl ser s tree to egrend ol these types and operidions as e the module above.

Operators are et after the op and ops 1when more than one operator 15 imtrodieedy svimbols,
Operators can e gtven artribires mesquee brackets, such as assocativity and commutarivity Universally
quantitied vartabies nsed i eqarions are areoduced atter the var and zars svmbols. Finallve equations are
introduced after the eq sybol. The specification shows the lexible mix-fx notation of Mande, using nnderscores

o stay for arguments. which allows us to detine the syatax of alogic in the most narnral way.

3.2 Future Time LTL

The tirst monitoring logic that ve present. and which is built on propositional logic. is a variant of Future Time
LTL [15]. Future Time LTL is 1 logic with execution traces as models. which makes it convenient for program
monitoring. LTL provides oper wtors such as 2.V (always X), o.X (eventually X}, o\ (next X}, and YUY (X
until Yi. and their composition with standard propositional operators. Usually in formal methods literature.
concerned with subjects such s model checking and theorem proving, LTL models are infinite traces. In a
testing context. however, traces are finite: sooner or later. the monitored program will be stopped and so its
execution trace. Hence the operational semantics has to reflect this. Future time LTL can be implemented
efficiently more easily than we !nitially thought on top of propositional calculus:

fmod FT-LTL is ex PROP-CALC . eq ([ X){As} = ({] X) /\ X{As} .
ese Syntax sse eq (<> X){As} = (<> X) \/ X{As} .

op {]_ : Foraula -> Formula . eq (o X}{As} =X .

op <>_ : Formula -> Formula . eq (X U ){As} = Y{As} \/ (X{As} /\ (X U ¥))

op o_ : Formula -> Formula .

op _U_ : Foraula Formula -> Foraula . eq ([] X){(As s} = X{As #} .

eq (<> X){As *} = X{As ¢} .

esx Semantics eee eq (o X){As s} = X{As s} .

vars X Y : Formula . var As : AtomState . aq (X U Y){As *} = Y{As s} .

e ifm

The four LTL operators are ad led to those of the propositional calculus using the symbols: (J. (always), <>.
(eventually), o. (next), and _U. (until). The operational semantics of these operators is based on a formula
transformation idea, and is defined by 8 rules, divided into two groups. all refining the operator _{.}:FormulaDs
AtomState -> FormulaDS that comes from the FORMULA module. Note that in the future time LTL case the
formulae themselves are used as data structures (Formula is a subsort of FormulaDs). This operator defines how
a formula is transformed by the occurrence of a state change {a new state), and evaluated on the propositional
leaves. The intuition behind the {_} operator can be elaborated as follows. Assume a formulae X we want to
hold on an execution trace of which the first state is As. Then the equation X{As} = X'. where X’ is a formula
resulting from applying the _{_} operator to X (and As), carries the following intuition: “in order for X to hold
on the rest of the trace. given that the first state in the trace is As. then X' must hold on the trace following
As”. The first set of rules descr.bes this semantics assuming that the state As is not the last state in the trace,
while the last four rules apply when the state As is the last in the trace. The term As « represents a state that
is the last in the trace, and reflects the intuition that the finite trace can be regarded as an infinite trace where
the last state of the finite trace is repeated infinitely. The two rules for each operator implement the following
simple equivalences:
s~tEp it tE= s}
s ~endk=p if p{sx} = true.

where s = ¢t is a trace formed b a state s followed by a nonempty trace t.and s = end is the trace consisting
of s followed by the end of trace (the last state in the finite trace). As an example. consider the formula [1<(X
-> oY) and a trace where the frst state As makes X true but Y false. [n this case [J(X -> <>Y){As} = (J(X ->
<>¥) A <>Y {modulo propositional caleulus rewriting). This refects the fact that after the state change. <>Y now
has ro be rrue on the remaining rrace, in addition to the original always-formula. A proof of correctness of rhis
algorithm is given in [10]. Despite its overall exponential complexity. this algorithm rends ro be quite acceptable
in practical situations. We couldn’t notice any sensible ditference in global concrete expertments with JPAX
hetween this simple 3 rule algorithm and an antomata-based one developed by Dimitra Giannakopoulou, that
impletients in LY lines of Java code a Buchi automata inspired algorithm adapted to Anite trace LTL fsee

Subsecrion 3.4

<t



Sich o tte ceaes semanties for LUL used for progtun aaonimortag s, however: sorne cliaractensties that

U rhe end of the execution reace, swhen the observed prograng teruimates, rhe observer

[ PR R & 81 ‘HIHAI.“H'II.‘.
Lot as constder auatn the tormula

Hecils to take 1 decston resacding the vadidity of the choecked properries,
flip -» <»q If cach p owas foillowed by at least one q drieune the momtored exection, then At sowe exrent
one could sy riat the formula was satisfed: although one should be aware that this is not a dehntte answer
hecanse the formnla could have been very well violatedd in the furnre af the program hadn't been stopped. {f

p wits trie and ot was not followed by a q. then one could s rhar rhe formula was violated, but it may have
heen very well sacistied it the program had been left ro contine its oxeention. Furrhermore, every p could have
been followed by a q during the execution, only to be violated for the last p. in which case we would likely
expect the program to be correct if we terminated it by force. There are of course LTL properties that give the
nser absolute confidence during the monitoring. For example. a violation of a safery property reflects a clear
misbehavior of the monitored program.

The lesson rhat we learned from experiments with LTL monitoring is twofold. First. we learned rhat. unlike
in model checking or theorem proving, LTL formulae and espectally their violation or satisfaction must be
viewed with extra information such as for example statistics of how well a formula has “performed” along
the execution trace. Second, we developed a belief that LTL may not be the most appropriate formalism for
logic based monitoring; other more specific logics, such as real time LTL, interval logics, past time LTL, or
even undiscovered ones, could be of greater interest than pure LTL. In the next subsection we describe an
implementation of past time LTL in Maude, a perhaps more natural logic for runtime monitoring.

3.3 Past Time LTL

Past time LTL is useful for especially safety properties. These properties are very suitable for logic based
monitoring because they only r=fer to the past, and hence their value is always either true or false in any state

along the trace. and never to-be-determined as in future time LTL. The implementation of past time LTL is,

bow ove s oprion )y slichti wore tedions thar the bor feelamentat’ n of futur~ time TTL ™ is ~'so built

on top of propositional calculus, by adding the usual two past time operators, ~- for previous anda _S_ tor since,
and then appropriate data structures and semantics. The implementation appears similar to the one used in

’

[13] (according to private comraunication), which also uses a version of past time logic. We here present the
past time logic module as is. ard then give a step-wise explanation.

eq ptltl(true){As} = true .

eq ptltl(false){As} = false

eq ptLtl(A){As} = atom(A, (A{As} == true))
aq ptLtl(” X){As} = false .

ceq ptLtl(X S Y){As} = since(Dx,Dy,[Dy])
ess Semantic Data structure ®es if Dx := ptLtl(X){As}

op ptLtl : Formula -> FormulaD$S . /\ Dy := ptLtl(Y){As}
ceq ptLtl(X /\ Y){As} = and(Dx,Dy,(Dx] and (Dy])

tmod PT-LTL is ex PROP-CALC
ane Sy-ntax "y
op . : Formula -> Formula .

op .S_ : Formula Formula -> Foraula .

op atom : Atom Bool -> FormulalS . if Dx := ptLetl(X){Aa}

op prev : FormulaDS Bool -> FormulaDS . /\ Dy := peLtl(Y){As} .

op and : FormulaDS FormulaDS 8ool -> FormulaD$ . ceq ptLtl(X ++ Y){As} = xor(Dx,Dy, (Dx] xor (oyl)
op xor . FormulaDS FormulaDS Bool -> FormulaDS . if Dx := ptLtl(X){As}

op since : Forn?laDS FormulaDS 800l -> FormulaD$ . /\ Oy := ptLtl(Y){As} .

ses Semantics ese
eq atom(A,8){As} = atom(A, (A{As} == true))
aq prev(D,3){As} = prev(D{As}, (D]}
caq since(Dx,Dy.B8){As} = since(Dx’ Dy’.
(Dy’) or B and (Dx])

vars X Y : Formula

vars D Ox Dy : FormulaDS .

vars D’ Dx' Dy’ : FormulaDS .

var 8 : Bool

var A : Atom .

var As AtomState if Dx’ := Dx{As}
/\ Dy' := Dy{As}

aq [atom(A,B)] = 8 . ceq and(Dx,Dy.B){As} = and(Dx’,0y’.(Dx'} and (Dy’])

eq [prev(D.,B)] =8
aq [since(Dx.Dy,B)] = B
eq [and(Dx,Dy,B)] = B

if Dx' = Dx{As}
/\ Dy’ = Dy{As}

caq xor(Dx,Dy,B){As} = zor(Dz’,Dy’.(Dx’] xor oy’ 12

1f Dx' .= Dx{As}

eq [xor(Dx,Dy.B)] =8 .
/\ Dy' = Dy{As}

endfm

The module first inteoduces the syntax of the logic, the premons operator and the senee operator. The next
two sections of the module introduee the semantic data stenetuee needed for past time LTL formulac. and its
semantics. The data steucture is represented by the sort FormulaDS. introduced in rhe FORMULA module. and

is necded 1o cepresent a tormu i during exeontion. This s i confrast to future time LTL. where a formula



represented tseds o rnsfonmation ciuased by state tradsiion s preformed by sanstorminyg the formula

o o nesy fortbi thoe boad o fodd ong the rest oF the weaee, topast vne UL this o chigne does not apply
stend, Tor each formnhi aspecal reee-like dara steneties s mtroduced s whieh keeps mrack of rhie baoleawn vadue
of wll subformmae of the formulvin the provions state: Chese valnes aee nsed to correerly evadiate rhe vadue of
the entire formuba i rhe qext state. Che operation prlel itializes 'creates the data srenenice representing 4
formuliv. Che constructors of the type Foemulad$ rorrespond ro the ditferent kinds of past rine LTL operators:

atom {for atormic propositions). and. xor. prev. and since. Henceo for example the formula = A (previons Ay for

some totie proposition A is tepresented by previatom(A, true)  false) in the example case that A s toae in the
current stare, but was false in the previous state. Hence the second boolean argument represents the current
value of the formula. and is returned by the [.] operation. The ptLlel operition thar creates the initial data
strnctires from formulae is defined through equations that also define the dperation _{.}:FormulaDS AtomState
-5 FormulaDS on the initial aroriic state. Hence. this defines how the data strncture of a formula is initialized.
Note that this operation now is applied ro the data structure of a formula. The equations for the three binarv
operators (since. and and xor) are defined using conditional equations ‘ceq). Conditions are provided after the

if kevword and introduce new variables used in the equations.

3.4 Efficient Observer Generation

Logic-based monitoring can add overhead to the normal execution of programs. Because of the high complexity
of validity in many logics, it is very easy to design and implement inefficient algorithms. We deliberately decided
that. at this early stage of JPAX, it is more important to concentrate our efforts on finding and experimenting
with more expressive and natural logics for monitoring, rather than implementing very efficient algorithms for
particular logics which may soon turn out not to be the most appropriate ones. However. since LTL seems to
be a good candidate logic, we started to investigate efficient runtime formula verification algorithms for both
future time and past time LTL. More precisely, we are looking for algorithms that generate efficient observers
oL E ue b ) coc ord s cuetere thg tenende T o felie s odan e weted oo s tife
synchronously with the observed program, returning an appropriate message when the formula is violated.

After experimenting with ruatime verification algorithms for LTL [10, 16, 11], each with its advantages and
drawbacks. we realized that in order for one to properly compare these, one needs to first understand and
establish criteria for “good” runtime verification algorithms. Consider a fixed logic. The following is a list of
priorities that currently influence the choice of runtime algorithms in JPAX

Forwards Design. Algorithm: that visit the execution traces backwards involve storing the trace and cannot
throw exceptions or guide the program when a formula is violated.

Runtime Efficiency. An algorithm that is exponential in the size of the trace is unusable. while an algorithm
that is exponential in the size of formula is usable but better be avoided.

Initialization. The time required to generate code or data structures from formulae cannot be ignored, but it
is considered less important than the previous criteria.

A trivial rewriting ;lgorithm for future time LTL that blindly implements the semantics is immediate (see also
[10]). but it is exponential in the size of the trace. so it is impractical. The simple and elegant procedure shown
in Subsection 3.2 and proved correct in [10] is worst-case exponential only in the size of the formula but linear
in the size of the trace. We found it quite good in practice so far and the fact that it can be implemented in only
a few lines of Maude code makes it a very good choice at this incipient stage of JPAN. Dynamic programming
algorithms generated from future time LTL formulae [16] run in time O(nm), where n is the size of the trace
and m is the size of the formuli.. Unfortunately. these algorithms visit the execution trace backwards so tney
fail to satisfy the Hrst criterion. Fortunately. the same idea applies to past time LTL and. by dualization. vields
forwards algorithms of the same complexity. Therefore. past time LTL is a very mcely computable logic for
monitoring. Besides that, the naturalness with which one expresses safety recuirements i it makes us helieve
that it is 2 betrer choice than future time LTL.

However. we next very brieby present some concepts that lead to o futnre tune fnre-trace LTL formmnla-
checking algorithm that s the bost one of which we are aware satisfying the criteria above e visies the execnrion

trace forwards and its worst-cise cuntime complexity is O(ok . where s the lengrh of the trace and k is rhe



Gt of stmbles of the foemnda Phe complene detals together with opianaity nraols will appear elsewhere

NEIRI!

Wee tiest trodice some e strnetares charoaall beoneeded ro eneode formnla. Intarively,
vhere the todes are atomic propositions, while the feaves are states or reuth
~having the tvpieal ntuition:

A hnary

tronsebion tree s o binars tree
valites. For stmpiicity i wreiting, we make nse of 1 C/Javaslike opecaror o
{aohoet 1s o set of “atomue propositions” and

Wty t means Cif a then fpoese 170 More preciselvoaf P =
N 1) are all well-formedd

S = {1230 s aset of tstates™ chen w1 2 Land @702 falsel - i true - (h73
(P -binary transition trees. We next give a compact formal detinition which can be skipped by the impartient
coauder. Lot Bool be the set {trua false} and ler ns consider two sorts Prop and State rhat stay for propositions

and states, respectively.
- -

Definition 1 Given sets P : Prop and S . State, respectively. then a (P75)-binary transition tree (or
simply {P?5-BTT or even BTT is a term of sort BTT of the order-sorted free algebra Te(P. 5 U Boolj over
a4 signature £ consisting of the sorrs Prop. State and BTT with State a subsort of BTT, and the operation!

{2 Prop xBTT xBTT — 3TT. If S is empty then (P?$)-BTT's are called P-binary decision trees {or
simply P-BDT's or BDT's}. ]

If size of a BTT becomes an important issue. than one can change this definition to take advantage of
repetitions of subtrees, thus obtaining directed acyclic graphs instead of trees, like in the case of binary decision
diagrams (see for example [1]). However, the size of BTT's doesn’t seem to be important yet, in the sense that
it doesn't affect any of the three criteria above.

Definition 2 A BTT finite state machine {or simply BTT FSM) consists of sets P and 5. together with
a total function next that maps each element in S into a (P?S)-BTT. A BTT finite trace FSM is a BTT
FSM together with a total function end that maps each element in 5 into a P-BDT. ]

Uhe function ena decides .. aeliet a stdte is avcepting ol G0t Will a Loace etds there, W he wotia of ales pron
“execution” trace should be next defined but space doesn't allow us to go into more formal aspects. We only show
how the LTL formula O(a — ob) can be encoded as a BTT finite trace FSM: in this case P = {a.b}, S = (1,2},
next(1) = a?(b”1:2) : 1, end(1) = a?(b’true : false) : true. and next(2) = b?1 : 2. end(2) = b7true : false. The
intuition for this data structure s as follows. If the monitored program. say P, is in a state which is not the end
of the observed trace. then: if tae observer is in state 1 then evaluate the atomic proposition a in the current
state of P and if this is true the1 evaluate b and if this is false then change the state of the observer to 2: if the
observer is in state 2 then evatuite only b and if this is true then change the observer state to 1. If one decides
to stop the monitoring of P, then the end BDT are evaluated similarly. Notice that false is returned when an
a occurred in the execution trace which was not followed by a b. The reader may have already noticed that we
paved special attention to the evaluation of atomic propositions: they are evaluated only when needed. This is
because the evaluation process can be often long; for example. an atomic proposition can test whether an array
is sorted.

We have designed and implemented in Maude (in less than 200 lines of code) a relatively easy and elegant
procedure that gefrerates an optimal BTT finite trace FSM from any LTL formula. Despite its worst-case
exponential complexity, it is quite fast on typical formulae and it never needed more than 30 seconds (on a
100MHz laptop) to generate an optimal data structure: it needed more than 1 second only on hand-crafted
artificial formulae. This initialization time is spent only once. at the beginning of the monitoring. The following
ace a few examples of optimal BTT finite trace finite state machines generated by our current implementation:

Formula State | next end
Qon l 1 atrue : false
olQav C—a)ll ! true
Ota — oh) L ath?’1:2) 1 al{h’true : false) : true
2 /0 hltrue : false
Wl (hile) 1 Cetrue  (alL (b2 falsey; 1 o true - false
2 Celtrue s (672 - false) 1 «true : false

"Wrettten tnonux-ix notation



Notiee that eness propertios do not readly make sense o e teace LUL wirhoas statistu Al analvses. {n
particndar, the formodic 7o 0w violared it and anby b s Baise o the st observed state of rhwe monitored

proveun Phe Yormadac 20 Ty 107 s e alwies tene i fre teace LD and one opriaal senerator proved tht,

4 Error Pattern Analysis

Losic based analvsis of execnt on traces can reveal domain specitic high level errors. but it implies human
intervention in designing the apolication requirements or/and their underlying logics. However. many errors are
lower level and are nsually due to bad programming practice or lack of attention. and fortunately. an interesting
portion of them can be revealed automatically. Even if some of these errorpatterns rould be specified using
adequate requirements formalisms and then enforced using the same logic-based approach as above. we think
that this procedure is too heavy for this kind of errors. and that it is actually more appropriate to allow the
users attach designated efficient algorithms to JPAX,

Error pattern runtime analysis algorithms explore an execution trace and detect error potentials. The
important and appealing aspec’ of these algorithms is that they find error potentials even in the case where
errors do not explicitely occur in the examined execution trace. They are usually very fast and scalable, and
often catch the problems they are designed to catch, that is, the randomness in the choice of run does not
seem to imply a similar random.ness in the analysis results. The trade off is that they have less coverage than
heavyweight formal methods and often suggest problems which, after a careful semantical analysis. turn out
not to be errors. Two examples of such algorithms focusing on concurrency errors have been implemented in
JPAX: the Eraser data race analysis algorithm [17] originally developed by S. Savage. M. Burrows, G. Nelson,
P. Sobalvarro and T. Anderson; and a deadlock analysis algorithm based on analyzing lock cycles. Both these
algorithms have been previously implemented by Compaq in the Visual Threads tool (6] to work for C and
C++. Inspired by the Visual Threads tool, we also previously implemented the data race algorithm and a
variant of “he Aeadlock algorithm in Java PathFinder 7], modifving the Twa Virtual Marhipe described in nsl.
Our contribution in error pattern analysis for JPAX is to make these algorithms work for Java using byte code
instrumentation. to integrate them with logic based monitoring, and to allow advanced users to program new
error pattern analysis rules in z flexible manner. The rest of this section shortly describes the data race and

deadlock detection algorithms.

4.1 Data Race Analys:s

We briefly describe here how easily data races can occur in concurrent programming and how Eraser [17] has
been implemented in JPAX to work on Java programs. A data race occurs when two or more concurrent threads
access a shared variable, at least one access is a write, and the threads use no explicit mechanism to prevent the
accesses from being simultaneous. The Eraser algorithm detects data races by studying a single execution trace
of the monitored program, trying to conclude whether there exist valid runs where data races are possible. We
illustrate the data race analysis with the following example.

. class Value{

e

1
2 private int x = L;

3.

4. public synchronized void add(Value ¢){x = x + v.get();}
5

6

7

public iat get{){return x:}
}
8.
9. class Task extends Thread{
1o Value v1l; Value v2;

L.

12.  public Task(Value v1l,Value ¥2}{

13 this. vl = vl, this.v2 = v2,

14. this. start();

15 }

16.

L7 public void run(){vl. add(v2),}

3}

19

20. class Main(

21 public static voud main(Stringl] args){
22 Yalue v1 » nevw Value(); Value v2 = new Value(),



2 new TaakCrl . 72) 0 aew Taskizl s}

wmteser virtable o svachronized method add har apdices by adding the

Fhe class Yalue contans
vetirns the vaduae of o Task

comtent of another Value variable, and an unsvochronized merhod get riat simpi
i threwd class its instinees are stacted with the method stare which exeentes rhe -ser defined method run.
Towor stieh asks are started in Main, on two tnstances of the Value class. o1 and 72 Wien running JPAVX with
the Eriser option switched on, a data race potential is found. reporting that rhe viriabie x in class Value is
accessed nnprotected by the tw) threads in lines 4 and 6. respectively. The generated warning message gives a
seonario under which a data race might appear. summarizing the following. One Task thread can call the add
method vn the object v with the parameter Value object v2. whose content is thus read via rhe unsvochronized
get method. The other thread can simultaneously do the same thing. i.e.. call the add method on v2. Therefore,
the content of v2 might be accessed simultaneously by the two threads. Tm) data race warnings are actually
emitted. since the the other task can perform the same behavior with vt and v2 interchanged.

Roughly. the algorithm wor«s and is implemented in JPaX as follows. The instrumented bvte code of the
monitored program emits to the observer appropriate events when variables are read or updated. and when locks
are acquired or released as a result of executing Java's synchronized statements or from cailing/returning from
synchronized methods. The observer maintains two data structures: a thread map that keeps track of all the
locks owned by each thread. and a variable map that associates with each (shared) variable the intersection of
the set of locks that has been commonly owned by all accessing threads in the past. If this set ever becomes
empty then a data race potential exists. More precisely, when a variable is accessed for the first time. the locks
owned by the accessing thread at that moment are stored in the variable’s variable set. Subsequent accesses by
other threads causes the set to be refined to its intersection with the locks owned by those threads. An extra
state machine is also maintained for each variable to keep track of how many threads have accessed the variable

and how (read/write). This is used to reduce the number of false warnings. such as situations in w hich variables

<o e baartue o er

ate witalizo o b, asinge turcad withono oks widch is safey  oseverootiren
has been initialized (which is also safe).

Deadlock Detection

Deadlock potentials are hard to find in general. but there are classical deadlock situations which occur when
muitiple threads take locks in d fferent order. For example, a deadlock will arise if a thread acquires a lock and
then. without releasing it. acquires another lock. while another thread first acquires the second lock and then
the first one. One can simply crate such a situation in the previous Java example if one wrongly tries to repair
the data race by also defining the get method in line 6 as synchronized:

6. public synchronized int get(){return x;}

It is clear now that the data race algorithm will indeed not return a warning anymore because the variable x
can no longer be accessed simultaneously from two threads. However. there is a deadlock potential now and
JPAX detects it. .Mote exactly, when running JPaX on the modified program. a lock order problem is found
and an appropriate warning message is issued summarizing the fact that two object instances of the Value class
are taken in a different order bv the two Task threads. It also indicates the line numbers where the threads
may potentially deadlock: line + where the get method called from add may lock the second object. Notice
that this deadlock doesn’t need to appear in the examined trace in order for this warning ro be issued. [n fact.
deadlock potentials might be resorted in general even if those deadlocks will never appear in any execution of
the program. Any execution of she modified program above will cause a warning to be issued.

The runtime deadlock analysis algorithm is also implemented in the observer and 1t needs only a subset of
the events generated for the data race algorithm, namely those related to lock acquires and releases of locks that
esult from executing Java's synchronized statements or from calling returning from svachronized met hods.
Two dati structinres are maintaned in the observer: as in the data race algorithm a thread map keeps rrack of
the locks owned by sach theead, while asecond data structnee, alock graph. updates wzraph that ace nrmulates as
nodes adl the tocks taken by any thread during an execution, the edges recording locking orders. In other words.
an edee is inrrodneed from a lock ro another each time when a theead that alreidy owns the Hrst lock acquires

the other. I during the exeenticon of the program this graph becomes evelics then there 15 a deadlock porential

E



related to lock srdering m the program. Plis sunple adgortthon can reveal more comples Aeadlock porentials

Detweet more than tavo threads s ilhisteared for exaanple by the classical dinmg, phidosopher s exatuple.

5 Conclusions

We have presented JPAXL o untime verification tool nnder development at NASA Ames Research Center.
JPAX provides an integrated o viconment for instonmenting Java byte code ro emit events during execution to
at observer. which performs two kinds of analvsis: logic based monitoring. checking evenrs against high level
requirements specitications. and error pattern analysis. searching for low level programming errors. [t has been
shown how the rwo kinds of veritication can be combined by viewing both kinds as rules within an extensible set
of rules. It has in particular been demonstrated how the Maude rewriting logic can be used to define new logics
for runtime verification in a verv flexible manner. and how the Maude inference engine can be used to perform
the monitoring itself. [n the case where optimal efficiency is required. we have shown that optimal automata
can be generated from future time and past time LTL. Finally. two known error pattern detection algorithms.
one for data races and one for deadlocks. have been implemented to work on Java.

The project as described above mainly focuses on applying the tool during testing of a software application.
Hence, with this perspective the goal is to smoothly combine testing and formal methods, while avoiding some of
the pitfalls from ad hoc testing and the complexity of full-blown theorem proving and model checking. However,
an at least equally interesting application of runtime verification is to apply it during operation, and influence
the program behavior in case requirements get violated. Our future research will focus on this aspect. In
general, integration in the overall NASA Ames automated software engineering effort is highlighted, and here
two crucial issues are: how can testing be made more formal. and how can missions be made safer in the face
or errors occurring during flight that survived tests.

Of other future work can be mentioned that we will experiment with new logics in Maude more appropriate
meonitorts ot LT vl < 8- eval and ceal ticee "amics and TN protat ns The larrer dllows co chec'
original designs (via state charts and/or sequence diagrams) against "real” execution traces. Future work on
error pattern analysis will try to develop new algorithms for detecting other kinds of concurrency errors than
data races and deadlocks, and cf course to try to improve existing algorithms. We will also study completely
new functionalities of the systemn. such as guided execution via code instrumentation to explore more of the
possible interleavings of a non-deterministic concurrent program during testing. Dynamic program visualization
is also a future subject. where ve regard a visualization package as just another rule in the observer. A more
user friendly interface, both graphical and functional. will be provided. and finally the tool will be evaluated

against NASA safety critical applications.

References

[1] E. M. Clarke. O. Grumberg and D. A. Peled. Model Checking. The MIT Press, Cambridge. Massachusetts.
1999.

[2] M. Clavel, F. J. Durin, S. IZker. P. Lincoln, N. Marti-Oliet. J. Meseguer, and J. F. Quesada. The Maude
svstem. In Proceedings of the [0th International Conference on Rewriting Techniques and Applications
(RTA-99). volume 1631 of LNCS. pages 240-243. Trento, [taly. July 1999. Springer-Verlag. System de-
scription.

(3] S. Cohen. Jtrek. Compaq,
http://www.compaq.com/java/download/jtrek.

(4] D. Drusinsky. The Tempora Rover and the ATG Rover. In SPLV Model Checking and Software Verification,
volume 1885 of LVCS. pages 323 -330. Springer. 2000.

3] B. Fischer. T. Pressburger G Rosu. and J. Schumann, The AntoBaves Program Swnthesis System -
Svstem Deseription. [n Symposiwrn on the [ntegration of Symboli: Computation and Mrchanzed Reasonng
(CALCULEMUS 2000), Suna, [taly, June 2001



[12]

[13]

) arrow Buntune Checkow of Mudtaheeaded Appheations with Vsnal Phireads,

In SPLN Model Checking
and Softwnre Vertfieation, volume 1385 08 LVCST pages 350 382 Springer. 2000

I Favelind Csing Runtime Analysts to Coide Model Checking of Lava Prograns. [ SPIN Model ¢ heckiny
and Softwnre Vertfication, volnme [R5 0 LVCS, pages 28 26k Springer. 2000

DK Havelund, Mo Lowrv, and J. Penix. Formal Analysis of a Space Cralt Controller nsing SPIN. [n

Proceedings of the jth SPIN workshop. Parts. France, November 193 To appear in [EEE Transactions of
Software Engineering.
K. Havelund and T. Pressburger. Model Checking Java Programs using Java PathFinder. [nternational

Journal on Software Tools for Technology Transfer, 2(4):366-381. April 2000, Special issue of STTT
containing selected submissions to the 4th SPIN workshop. Paris. France. 1998.

K. Havelund and G. Rosu. Testing Linear Temporal Logic Formulae on Finite Execution Traces. RIACS
Technical report. http://ase.arc.nasa.gov/pax, November 2000.

K. Havelund and G. Rosu Java PathExplorer - A Runtime Verification Tool. In Proceedings of the
6th International Symposium on Artificial Intelligence, Robotics and Automation in Space (1-SAIRAS01),

Montreal, Canada, June 209)1.

J. Hsiang. Refutational Theorem Proving using Term Rewriting Systems. PhD thesis, University of [llinois
at Champaign-Urbana, 1981.

I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime Assurance Based on Formal Speci-
fications. In Proceedings of the International Conference on Parallel and Distributed Processing Techniques
and Applications, 1999.

M. Lowry, A. rhipot, T. cressburger, i. Underwood, R. waldwger, anu M. Stickel.  Anplivitt audto-
matic Programming for the NAIF Toolkit. In NASA Science Information Systems Newsletter, volume 31,
February 1994.

A. Prueli. The temporal lcgic of programs. In Proceedings of the [Sth IEEE Symposium on Foundations
of Computer Science. pages 46-77, 1977.
G. Rosu and K. Havelund. Synthesizing Dynamic Programming Algorithms from Linear Temporal Logic

Formulae. RIACS Technical report, http://ase.arc.nasa.gov/pax. January 2001.

S. Savage, M. Burrows, G. Nelson. P. Sobalvarro, and T. Anderson. Eraser: A Dvnamic Data Race Detector
for Multithreaded Programs. ACM Transactions on Computer Systems, 15(4):391-411, November 1997.

W. Visser, K. Havelund, G Brat, and S. Park. Model Checking Programs. In Proceedings of ASE2000:
The 15th [EEE International Conference on Automated Software Engineering. IEEE CS Press. September
2000. -

J. Whittle and J. Schumann. Generating Statechart Designs From Scenarios. In International Conference
on Software Engineering (ITSE 2000), Limerick, Ireland, June 2000.



